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(14). Future work will surely focus on why

more of apparently the same neurons seem

to have a different function.
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A
s a flood of data pours from scientific

and medical experiments, researchers

crave more efficient computational

methods to organize and analyze it. When

dealing with large, noisy data sets, scientists

often use a computational method that looks

for data clusters. In the case of gene expres-

sion with tens of thousands of sequences, for

example, the clusters would be groups of

genes with similar patterns of expression. On

page 972 of this issue, Frey and Dueck pro-

pose a new method for finding an optimal set

of clusters (1). Their algorithm detects special

data points called exemplars, and connects

every data point to the exemplar that best rep-

resents it. In principle, finding an optimal set

of exemplars is a hard problem, but this algo-

rithm is able to efficiently and quickly handle

very large problems (such as grouping 75,000

DNA segments into 2000 clusters). An analy-

sis that would normally take hundreds of

hours of computer time might now be done in

a few minutes.

Detecting exemplars goes beyond simple

clustering, as the exemplars themselves store

compressed information. An example with a

broad range of possible applications is found

in the statistical analysis of language. For

instance, take your last scientific paper (and

no, I don’t really suggest that it is a large, noisy

data set) and consider each sentence to be a

data point. The similarity between any two

sentences can be computed with standard

information theory methods (that is, the simi-

larity increases when the sentences include

the same words). Knowing the similarities,

one can detect the exemplary sentences in the

paper, which provide an optimally condensed

description. If you are a hasty reader, you can

thus go directly to Fig. 4 of Frey and Dueck’s

report and find the best summary of their own

paper in four sentences. But understanding the

method requires a bit more effort. 

Such methods start with the construction

of a similarity matrix, a table of numbers that

establishes the relationship of each data point

to every other data point. As we saw in the

semantics example, S(B, A) is a number that

measures how well the data point A represents

point B [and it is not necessarily equal to

S(A, B)]. The optimal set of exemplars is the

one for which the sum of similarities of each

point to its exemplar is maximized. In the

usual clustering methods (2), one decides a

priori on the number of exemplars, and then

tries to find them by iterative refinement,

starting from a random initial choice. 

The method of Frey and Dueck, called

affinity propagation, does not fix the number

of exemplars. Instead, one must choose for

each point B a number P(B) that characterizes

A fast way of finding representative examples

in complex data sets may be applicable to a

wide range of difficult problems. Where Are the Exemplars?
Marc Mézard

COMPUTER SCIENCE

The author is at the Centre National de la Recherche
Scientifique and Laboratoire de Physique Théorique et
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Caravaggio’s “Vocazione di San Matteo.” How to choose an exemplar through message passing. The mes-
sages are exchanged in the directions of the fingers and of the glances, leading to the recognition of San
Matteo as the “exemplar.”

Published by AAAS
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the a priori knowledge of how good point B is

as an exemplar. In most cases all points are

equally suitable, so all the numbers take the

same value P. This quantity provides a control

parameter: The larger P, the more exemplars

one is likely to find. 

Affinity propagation is known in computer

science as a message-passing algorithm (see

the first figure) and it aims at maximizing the

net similarity. It is in fact an application of a

method called “belief propagation,” which

was invented at least twice: first in communi-

cation theory (3), where it is now at

the heart of the best error correction

procedures, and later in the study of

inference problems (4). 

Message passing can be under-

stood by taking an anthropomorphic

viewpoint. Imagine you are a data

point. You want to find an exemplar

that is the most similar to yourself, but

your choice is constrained. If you

choose some other point A as an

exemplar, then A must also decide to

be its own exemplar. This creates one

constraint per data point, establishing a large

network of constraints that must all be satis-

fied. When the net similarity is maximized

with all constraints satisfied, the set of actual

exemplars emerges.

Now imagine that next to each point stands

a guardian angel telling whether someone else

has chosen that point as an exemplar or not.

An approximate solution of the complicated

web of conflicting constraints is obtained by

having all of these characters talk to each

other. At a given time, all angels send mes-

sages to all points, and all points answer to all

angels. One data point tells the angel of every

other point his ranked list of favorite exem-

plars. An angel tells every other point the

degree of compatibility of his list with the

angel’s constraints. Every sent message is

evaluated through a simple computation on

the basis of the received messages and the

similarity matrix. After several message-pass-

ing rounds, all the characters reach an agree-

ment and every point knows its exemplar. In

practice, the running time of this algorithm

scales linearly with the number of similarities. 

As an example, affinity propagation can be

a powerful method to extract representative

faces from a gallery of images (see the second

figure). The input is a list of numerical simi-

larities between pairs of data points, which

may be measured, computed using a model,

or, in the present example, set by visual

inspection (missing similarity values indi-

cated with question marks are accepted by the

algorithm). Each face is a data point that

exchanges messages with all other faces and

their guardian angels. After a few iterations

of message passing, a global agreement is

reached on the set of exemplars.

Such message-passing methods have been

shown to be remarkably efficient in many

hard problems that include error correction,

learning in neural networks, computer vision,

and determining the satisfiability of logical

formulas. In many cases they are the best

available algorithms, and this new application

to cluster analysis looks very powerful. Under-

standing their limits is a main open challenge.

At the lowest level this means controlling the

convergence properties or the quality of the

approximate solutions that they find. A more

ambitious goal is to characterize the problems

where they can be useful. The concepts and

methods developed in statistical physics

to study collective behavior offer the most

promising perspective in this respect. In

physics terms, belief propagation (and

therefore affinity propagation) is a mean

field–type method (5). That is, the complex

interaction of a given object (a data point)

with all of the others is approximated by an

average effective interaction. Although this

works well in most cases, it may get into trou-

ble when the system gets close to a phase tran-

sition (6), where some correlations become

extremely long-ranged. The appropriate mod-

ification, which requires using more sophisti-

cated messages, has been worked out in some

special cases (7), but again its full range of

applicability is still to be found. 

Along with its pedagogical virtue, the

anthropomorphic explanation of message

passing also underlines its main features. This

Data points
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Faces in a crowd. Exemplars (highlighted
by colored boxes) have been detected from
a group of faces by affinity propagation.
(Inset) A similarity matrix for a set of faces.
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strategy can find an excellent approximate

solution to some of the most difficult compu-

tational problems with a very simple recipe:

It uses basic messages which are exchanged in

a distributed system, together with simple

update rules that are purely local. This realizes

in practice a new scheme of computation,

based on distributed simple elements that

operate in parallel, in the spirit of neurocom-

putation. One might expect to find that some

of its principles are at work in living organ-

isms or social systems. Each new successful

application of message passing, such as affin-

ity propagation, thus adds to our understand-

ing of complex systems.
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G
eology spent the 19th and much of the

20th century fighting a scientific civil

war over the origin of granites—the

coarsely crystalline, feldspar-rich rocks that

make such excellent building stones and

kitchen counters. The ultimate losers (1) held

that granites precipitated from aqueous fluids

that percolate through the crust, or formed by

reaction of preexisting rocks with such fluids;

the winners (2) recognized that granites crys-

tallized from silicate melts. 

Yet, the resolution of this argument led to

various others that remain almost as divisive.

Are the silicate melts that give rise to granites

partial melts of preexisting rocks in the conti-

nental crust, or are they instead the residues of

crystallizing mantle-derived basalts, analo-

gous to the brine that is left when ice freezes

out of salty water? If granites form by crustal

melting, do they come from the sediment-rich

upper crust or from preexisting igneous rocks

that dominate the lower crust? On page 980

of this issue, Kemp et al. (3) examine these

questions through the lens of two of the

newest analytical tools developed for the

earth sciences.

Clear answers to the above questions

have been found previously for some

extreme types of granite. There is little

debate that upper-crustal sediments are

the sources of S-type granites (4) (where “S”

stands for sediment) and that mantle-derived

basalts give rise to M-type granites (5) (“M”

for mantle). However, members of a third

class—the I-type (4)—are abundant, widely

distributed, and diverse, and their origins are

up for grabs. A popular view holds that these

granites are melts of deep-crustal igneous

rocks (hence the “I” for igneous) (4, 6). A

minority dissenting view suggests that they

are instead largely mantle-derived and only

modified by passage through the crust (7).

The stakes in this argument are high:

I-type granites (or their metamorphosed or

eroded derivatives) make up a large fraction of

the continental crust. Therefore, our thoughts

regarding their origins are key to understand-

ing the mechanisms by which the continents

differentiate from the rest of the silicate earth,

and the consequences of that differentiation

for the composition of the mantle. If I-type

granites are descended from basalts, then their

formation represents net growth of the conti-

nents and net removal from the mantle of ele-

ments that are highly concentrated in the crust

(such as the heat-producing radioactive iso-

topes, 40K and 238U). If, instead, they form by

melting preexisting crustal rocks, they repre-

sent a mechanism by which the continents

internally redistribute their various sedimen-

tary and igneous constituents.

One reason the origin of granite is such a

difficult problem is that these rocks can be

extremely complicated (see the figure) (8).

Many are composed of minerals that represent

only a component of the melts from which they

formed; some are mixtures of minerals that

grew from different melts; some contain

unmelted remnants of their sources; and indi-

vidual minerals often have het-

erogeneous chemical and iso-

topic compositions, reflecting

the evolution of their parental

magmas over the course of

their crystallization.

Kemp et al. (3) examine

the origin and evolution of

I-type granites from the Lach-

lan belt in Australia. Their

work draws on several recent

microanalytical innovations,

including high-precision, in

situ measurements of oxygen

isotope ratios with a large-

radius ion microprobe and in

situ measurements of hafnium

isotopes using laser ablation

joined with an inductively

coupled plasma mass spec-

Granites make up a large part of the continental

crust. New data reveal their complex and

diverse formation history, calling for a revision

of the geological histories of many granites.
On the Origins of Granites
John M. Eiler

GEOLOGY
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10 km

San Jose pluton

1 mm

Tonalitic I-type
granite; thin section

5 cm

Tonalitic I-type granite;
hand specimen

The suspect. Images of I-type granites resembling those
examined by Kemp et al. The aerial photograph (main

image) shows the San Jose pluton (solid curve), an I-type
tonalite, or subtype of granite. Such plutons commonly form

kilometer-scale bodies intruded into rocks of the upper crust. Kemp et al.
suggest that assimilation of enveloping rocks influences the compositions of
such bodies. The insets show a specimen of a similar tonalite from the
Chihuahua Valley, California. The visible light photograph (right inset)
reveals dark laths of amphibole and hexagonal crystals of biotite embedded
in a white matrix of interlocking feldspar and quartz. The transmitted-light
photomicrograph (left inset) shows twinning, compositional zoning, over-
growths, and inclusions in plagioclase (complex light and dark pattern),
adjacent to a crystal of amphibole (brown). The micro-analytical techniques
employed by Kemp et al. aim to avoid artifacts that arise from mixing differ-
ent components of these compositionally and texturally complex rocks.
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